

JEE (ADVANCED), PMT & FOUNDATIONS

UTS- NEET -2020 MOCK TEST-06 SOLUTION

ANSWER KEY

PHYSICS

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	4	1	3	1	3	4	1	2	4	1	3	4	3	2	2	3	4	2	2	1	1	2	2	3	3
Ques.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45					
Ans.	3	2	4	3	2	3	4	1	4	2	1	4	4	3	2	1	2	1	1	1					

CHEMISTRY

Ques.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70
Ans.	1	3	1	1	1	1	4	2	3	1	1	1	3	4	3	2	4	1	4	1	3	2	1	3	2
Ques.	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90					
Ans.	2	2	2	3	1	3	4	1	3	2	4	2	1	2	4	3	4	1	1	1					

BIOLOGY

Ques.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110
Ans.	3	4	3	3	1	1	4	1	1	1	1	3	4	3	3	1	2	4	2	4
Ques.	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130
Ans.	1	2	2	3	1	4	1	1	4	1	2	2	2	4	1	3	2	2	4	1
Ques.	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Ans.	2	3	4	4	2	1	2	1	1	2	1	1	3	1	2	2	4	2	2	3
Ques.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170
Ans.	3	2	1	4	3	4	3	4	2	3	2	1	2	3	4	1	2	1	2	2
Ques.	171	172	173	174	175	176	177	178	179	180										
Ans.	3	1	3	4	1	4	2	1	3	1										

1.

$$\eta = \frac{F}{6\pi a v} = \frac{M L^1 T^{-2}}{L^1 L^1 T^{-1}} = M^1 L^{-1} T^{-1}$$

2.

$$\overrightarrow{A}.\overrightarrow{B} = AB \cos \theta$$

$$\cos \theta = \frac{-12 - 27 - 3}{\sqrt{2^2 + 3^2 + 1^2} \sqrt{6^2 + 9^2 + 3^2}} = 1$$

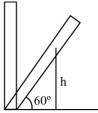
$$\theta = 0^{\circ}$$

3.

$$mgh = \frac{1}{2}mv^2$$
$$v = \sqrt{2gh}$$

$$\textbf{4.[1]} \qquad v_{av.} = \frac{Area\,under\,the\,curve}{Time} =$$

5.[3]
$$v_{av.} = \frac{10 \times 10 + 300}{10 + 15} = 16 \text{ m/s}$$


6.[4]
$$R = \frac{v^2 \sin 2\theta}{g}$$
$$\sin 2\theta = \frac{Rg}{v^2}$$
$$\theta = \frac{1}{2} \sin^{-1} \left(\frac{Rg}{v^2}\right)$$

7.[1] mg sin
$$\alpha = \mu$$
mg cos α

$$\mu = \tan \alpha = \frac{1}{3}$$

$$\cot \alpha = 3$$

8.[2]
$$U = mg \frac{\ell}{2} \sin 60^\circ = \frac{mg\ell}{4}$$

9.[4] Ring or hollow cylinder

10.[1]
$$L_A = L_B = mvr$$

11.[3]
$$F = \frac{G\left(\frac{4}{3}\pi R^3 \rho\right) \left(\frac{4}{3}\pi R^3 \rho\right)}{(2R)^2}$$
$$F \propto R^4$$

12.[4]
$$\frac{\mu_2}{\mu_1} \times \frac{\mu_3}{\mu_2} \times \frac{\mu_4}{\mu_3} = \frac{\mu_4}{\mu_1}$$

13.[3]
$$\sin i = \mu \sin \frac{i}{2}$$
$$2 \sin \frac{i}{2} \cos \frac{i}{2} = \mu \sin \frac{i}{2}$$
$$\cos \frac{i}{2} = \frac{\mu}{2}$$
$$i = 2 \cos^{-1} \left(\frac{\mu}{2}\right)$$

14.[2]
$$45^{\circ} \ge \theta_{C}$$

 $\sin 45^{\circ} \ge \sin \theta_{C}$
 $\frac{1}{\sqrt{2}} \ge \frac{1}{\mu}$
 $\mu \ge \sqrt{2}$

15.[2]
$$x = \frac{D}{d} (\mu - 1)t$$

16.[3]
$$\frac{I_{\text{max}}}{I_{\text{min}}} = \left(\frac{\sqrt{9} + \sqrt{4}}{\sqrt{9} - \sqrt{4}}\right)^2 = \frac{25}{1}$$

17.[4]
$$\cot \frac{A}{2} = \frac{\cos A/2}{\sin A/2} = \frac{\sin \left(\frac{\delta_{m} + A}{2}\right)}{\sin A/2}$$

 $\sin (90^{\circ} - A/2) = \sin \left(\frac{\delta_{m} + A}{2}\right)$
 $90^{\circ} - \frac{A}{2} = \frac{\delta_{m} + A}{2}$
 $\delta_{m} = 180^{\circ} - 2A$

18.[2]
$$T \propto \frac{1}{\sqrt{K}}$$
 and $K \propto \frac{1}{\ell}$ $\therefore T \propto \sqrt{\ell}$

19.[2]
$$T = 2\pi \sqrt{\frac{L}{g}}$$

and $T' = 2\pi \sqrt{\frac{L'}{g}}$
or $\frac{T'}{T} = \sqrt{\frac{L'}{L}}$
 $L' = L(1 \times \alpha \Delta t)$
 $\therefore \alpha = \frac{\gamma}{3} = \frac{36 \times 10^{-6}}{3}$
 $= L(1 + 12 \times 10^{-6} \times 20) = 12 \times 10^{-6} \, ^{\circ}C^{-1}$
 $L' = L(1.00024)$
 $\frac{T'}{T} = \sqrt{\frac{1.00024L}{L}}$
or $\frac{T'}{2} = 1.00012 \ (\because T = 2 \text{ sec})$
 $T' = 2.00024$
Loss in time per day
 $= \frac{(2.00024 - 2) \times 24 \times 60 \times 60}{2} \text{ sec.}$
 $= 10.368 \text{ sec. Loss/day}$

20.[1]
$$v_{closed} = \frac{3v}{4L_{closed}}$$

$$v_{open} = \frac{3v}{2L_{open}}$$

$$\frac{3v}{4.L_{closed}} = \frac{3v}{2L_{open}}$$

$$\Rightarrow \frac{L_{closed}}{L_{open}} = \frac{1}{2}$$

- 22.[2] $V \propto T$
- 24.[3] In first case: Average temperature of liquid $= \frac{80+50}{2} = 65^{\circ}\text{C}$ Excess temp = $(65-20)^{\circ}\text{C} = 45^{\circ}\text{C}$ $\frac{d\theta_1}{dt} = \frac{50-80}{5} = -6^{\circ}\text{C/min.}$ $-6 = \text{K} \times 45 \qquad \dots (1)$

In second case:

Average temperature of liquid = $\frac{60+30}{2}$ = 45°C.

Excess temp = $(45 - 20)^{\circ}$ C = 25° C.

Rate of fall of temp $\frac{d\theta_2}{dt}$

$$\frac{d\theta_2}{dt} = -\frac{60 - 30}{t_{min}}$$
$$-\frac{30}{t_{min}} = K \times 25 \qquad \dots (2)$$

Divide (1) by (2) t = 9 min.

$$\frac{-6}{\frac{-30}{t_{min}}} = \frac{K \times 45}{K \times 25}$$
$$t_{min} = \frac{45}{25} \times \frac{5}{1} = 9 \text{ min.}$$

25.[3]
$$A_1 = A_0 e^{-t_1/T}$$

 $A_2 = A_0 e^{-t_2/T}$
 $\frac{A_1}{A_2} = e^{(t_1 - t_2)/T}$
 $A_3 = A_1 e^{(t_1 - t_2)/T}$

26.[3] As free proton is stable because its mass is less than neutron so it can't decay to form neutron

27.[2]
$$W_A = \frac{6.6 \times 10^{-34} \times 1.8 \times 10^{14}}{1.6 \times 10^{-19}} = 0.74 \text{ eV}$$

$$w_B = \frac{6.6 \times 10^{-34} \times 2.2 \times 10^{14}}{1.6 \times 10^{-19}} = 0.91 \text{ eV}$$

... photoelectrons will emit from A alone

29.[3]
$$\tau = PE \sin 30$$

$$10\sqrt{3} = \frac{PE}{2}$$

$$PE = 20\sqrt{3}$$

$$Potential Energy = -PE \cos 30$$

$$\therefore Potential energy = -20\sqrt{3} \times \frac{\sqrt{3}}{2}$$

$$= -10 \times 3 = -30 \text{ J}$$

30.[2]
$$\begin{aligned} q_1 &= C_{eq} \ V \\ &= \frac{10 \times 20 \times 10^{-6}}{30} \times 3 \times 10^3 = 2 \times 10^{-2} \\ &= 20000 \times 10^{-6} = 20000 \ \mu C \end{aligned}$$

33.[1]
$$B=\mu_0 n i$$

$$B'=\mu_0 \bigg(\frac{n}{2}\bigg)(2i)=B$$

34.[4]
$$\therefore$$
 F = qvB sin θ
 \therefore F = 0, if $\theta = 0^{\circ}$ or 180°

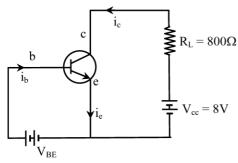
- **37.[4]** Quantity of heat liberated in the ammeter of resistance R
 - (i) due to direct current of 3 ampere = [(3)2 R/J]
 - (ii) due to alternating current of 4 ampere

$$= [(4)^2 R/J]$$

Total heat produced per second

$$= \frac{(3)^2 R}{J} + \frac{(4)^2 R}{J} = \frac{25R}{J}$$

Let the equivalent alternating current be I ampere;


then
$$\frac{I^2R}{J} = \frac{25R}{J}$$

or $I = 5$ amp

38.[4] If AC is the square wave then all these three options are possible.

39.[3] As D₁ is reversed biased
$$R_{eq} = 40 + 10 = 50 \Omega$$

$$\therefore i = \frac{3}{50} A$$

40.[2]

$$\beta = \frac{25}{26}$$

$$R_{in} = 200 \Omega$$

$$\beta = \frac{i_C}{i_b} = \frac{25}{26}$$

Here,
$$I_C R_L = 0.8 \text{ V}$$

$$\therefore I_{\rm C} = \frac{0.8}{R_{\rm L}} = \frac{0.8}{800} = 10^{-3} \text{A} = 1 \text{ mA}$$

Power gain =
$$\beta^2 \times \frac{R_L}{R_{in}} = \left(\frac{25}{26}\right)^2 \times \frac{800}{200}$$

= 3.69

- **41.[1]** Output is available only when both inputs are available.
- **42.[2]** Remember

43.[1]
$$d = \sqrt{2Rh}$$

 $N = \pi d^2 \sigma = 2\pi Rh \sigma$
 $= 2 \times 3.14 \times 6400 \times 0.1 \times 1000$
 $= 2 \times 3.14 \times 6.4 \times 10^5$
 $= 39.5 \times 10^5$

44.[1]
$$E = -\frac{dV}{dx} = -\frac{d}{dx} (5x^2 + 10x - 9) = -10x - 10$$

 $\therefore (E)_{x=1} = -10 \times 1 - 10 = -20 \text{ V/m}$

45.[1]

$$V = \frac{Q_1 + Q_2}{C_1 + C_2} = \frac{150 \times 2 \times 10^{-6}}{4\pi\epsilon_0 (r_1 + r_2)}$$
$$= \frac{300 \times 10^{-6} \times 9 \times 10^9}{30 \times 10^{-2}}$$
$$= 9 \times 10^6 \text{ V}$$

CHEMISTRY

46.[1]	XY_2	\Longrightarrow XY	+ Y
Initial	600 mm		
At eqm.	600-p	p	p
		Total = 600	+ p = 800
Actual values	400	200	200
	or	p = 200 mm	l
$K=\frac{2}{3}$	$\frac{100 \times 200}{400} =$	100	

47.[3] Suppose no. of atoms Q in the ccp arrangement =100. Then no. of tetrahedral sites = 200. As all the tetrahedral sites are occupied by atoms P, therefore their no. = 200. Hence ratio of P: Q = 2: 1 i.e. the formula is P_2Q .

48.[1]
$$K_{sp}$$
 of $M_2X = 4s^3$
 K_{sp} of $QY_2 = 4s^3$
 K_{sp} of $PZ_3 = 27s^4$ (Note $S < 0.1$)

49.[1] HCl is acid. Its pH will be < 7.

50.[1]
$$\Delta T = \frac{1000 \times K_f \times w}{W \times m}$$

9.3 = $\frac{1000 \times 1.86 \times 50}{62 \times W}$
∴ $W = 161.29$
∴ Ice separated = 200 – 161.29 = 38.71 g

53.[2]
$$Ca_3(PO_4)_2$$

 $K_{sp} = 108 S^5$
 $= 108 \left(\frac{w \times 1000}{M \times 100}\right)^5 = 108 \left(10 \times \frac{w}{M}\right)^5$

54.[3]
$$P = P_{A}^{\circ} X_{A} + P_{B}^{\circ} X_{B}$$

$$= P_{A}^{\circ} X_{A} + P_{B}^{\circ} (1 - X_{A})$$

$$= P_{A}^{\circ} X_{A} + P_{B}^{\circ} - P_{B}^{\circ} X_{A}$$

$$P = P_{B}^{\circ} - X_{A} (P_{B}^{\circ} - P_{A}^{\circ})$$

$$P = 254 - X_{A} \times 119$$

$$P_{B}^{\circ} = 254 \qquad P_{B}^{\circ} - P_{A}^{\circ} = 119$$

$$P_{A}^{\circ} = 135$$

55.[1]
$$B(OH)_3 + HOH \rightarrow [B(OH)_4]^- + H^+$$

56.[1] Lattice Energy
$$\propto \frac{\text{ch arg e}}{\text{size}}$$

59.[4] :
$$XeO_2F_2 sp^3d$$

60.[3] Ln(III) compound are generally coloured due to unpaired electron.

61.[2]
$$_{63}\text{Eu} = [\text{Xe}] 4\text{f}^7 5\text{d}^0 6\text{s}^2$$

 $\text{Eu}^{+3}, \text{Eu}^{+2} = [\text{Xe}] 4\text{f}^7.$

- **69.[3]** Selective reduction.
- **70.[2]** $K_b \propto +I$ effect
- 71.[2] Friedel-Craft reaction
- **72.[2]** Aldol condensation followed by reduction of aldehyde.
- **74.[3]** $3^{\circ} > 2^{\circ} > 1^{\circ}$ (reactivity order).
- **76.[3]** It is N.S.R. So Reactivity ∝ Stability of carbanion.
- 77.[4] Wurtz Reaction.
- **78.**[1] Gem dihalide.

80.[2]
$$M_1V_1 = M_2V_2$$

 (Ag) (HNO_3)

$$\frac{W}{MM \times V_1} \times V_1 = M_2V_2$$

$$\frac{0.784}{108} = 1.15 \times \frac{V_2}{1000}$$

$$V_2 = 6.32 \text{ ml.}$$

81.[4]
$$-2$$
 $A O.N = 12$
 $+4$
 $FeS_2 + O_2 \rightarrow Fe_2O_3 + SO_2$
 $+4$
 $A O.N = 1$
 $\therefore Neft = +12 - 1 = 11$

82.[2]
$$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$$

$$r_{O_2} = \frac{\sqrt{28}}{\sqrt{32}} \times 0.0355$$

$$= 0.0332 \text{ mole / min.}$$

83.[1]
$$\Delta H = B.E \text{ (Reactant)} - B.E \text{ (Product)}$$

= $[(4 \times 414) + 2 + 243] - [2 \times 414 + 2 \times 150 + 2 \times 432]$
= 150 kJ

- **85.[4]** True
- **86.[3]** True
- **88.[1]** Hydration, energy $\propto \frac{1}{\text{Size}}$ With increase in size of metal cation, hydration decreases.
- **89.[1]** Cupric Fluoride is non volatile.
- **90.[1]** As size of anion increases, covalent character increases and thus solubility in non-polar solvent increases.